SIAM Homepage | Search Catalog | New Books | Author Index | Series Index | Title Index | View My Shopping Cart

The catalog and shopping cart are hosted for SIAM by EasyCart. Your transaction is secure. If you have any questions about your order, contact

Purchase Now!

Computational Methods for Inverse ProblemsComputational Methods for Inverse Problems

Curtis R. Vogel

Frontiers in Applied Mathematics

Inverse problems arise in a number of important practical applications, ranging from biomedical imaging to seismic prospecting. This book provides the reader with a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems. It also addresses specialized topics like image reconstruction, parameter identification, total variation methods, nonnegativity constraints, and regularization parameter selection methods.

Because inverse problems typically involve the estimation of certain quantities based on indirect measurements, the estimation process is often ill-posed. Regularization methods, which have been developed to deal with this ill-posedness, are carefully explained in the early chapters of Computational Methods for Inverse Problems. The book also integrates mathematical and statistical theory with applications and practical computational methods, including topics like maximum likelihood estimation and Bayesian estimation.

Several web-based resources are available to make this monograph interactive, including a collection of MATLAB m-files used to generate many of the examples and figures. These resources enable readers to conduct their own computational experiments in order to gain insight. They also provide templates for the implementation of regularization methods and numerical solution techniques for other inverse problems. Moreover, they include some realistic test problems to be used to further develop and test various numerical methods.


Computational Methods for Inverse Problems is intended for graduate students and researchers in applied mathematics, engineering, and the physical sciences who may encounter inverse problems in their work.


Preface; Chapter 1: Introduction; Chapter 2: Analytical Tools; Chapter 3: Numerical Optimization Tools; Chapter 4: Statistical Estimation Theory; Chapter 5: Image Deblurring; Chapter 6: Parameter Identification; Chapter 7: Regularization Parameter Selection Methods; Chapter 8: Total Variation Regularization; Chapter 9: Nonnegativity Constraints; Bibliography; Index.

2002 / xvi + 183 pages / Softcover / ISBN-13: 978-0-898715-50-7 / ISBN-10: 0-89871-550-4 /
List Price $73.50 / SIAM Member Price $51.45 / Order Code FR23
Quantity desired

Search our catalog for:

Shopping cart provided by:
Select quantity and list or member price and then click the "Click to Order" button to add books to your shopping cart.
Banner art adapted from a figure by Hinke M. Osinga and Bernd Krauskopf (University of Auckland, NZ.)