SIAM Homepage | Search Catalog | New Books | Author Index | Series Index | Title Index | View My Shopping Cart

The catalog and shopping cart are hosted for SIAM by EasyCart. Your transaction is secure. If you have any questions about your order, contact

Purchase Now!

Advances in Linear Matrix Inequality Methods in ControlAdvances in Linear Matrix Inequality Methods in Control

Laurent El Ghaoui and Silviu-Iulian Niculescu, Editors

Advances in Design and Control 2

Linear matrix inequalities (LMIs) have recently emerged as useful tools for solving a number of control problems. This book provides an up-to-date account of the LMI method and covers topics such as recent LMI algorithms, analysis and synthesis issues, nonconvex problems, and applications. It also emphasizes applications of the method to areas other than control.

The basic idea of the LMI method in control is to approximate a given control problem via an optimization problem with linear objective and so-called LMI constraints. The LMI method leads to an efficient numerical solution and is particularly suited to problems with uncertain data and multiple (possibly conflicting) specifications.

Since the early 1990s, with the development of interior-point methods for solving LMI problems, the LMI approach has gained increased interest. One advantage of this technique is its ability to treat large classes of control problems via efficient numerical tools. This approach is widely applicable, not only in control but also in other areas where uncertainty arises. LMI techniques provide a common language for many engineering problems. Notions now popular in control, such as uncertainty and robustness, are being used in other areas through the use of LMIs. This technique is particularly attractive for industrial applications. It is well suited for the development of CAD tools that help engineers solve analysis and synthesis problems.


Preface; Notation; Part I: Introduction. Robust Decision Problems in Engineering: A Linear Matrix Inequality Approach, L. El Ghaoui and S.-I. Niculescu; Part II: Algorithms and Software; Mixed Semidefinite-Quadratic-Linear Programs, J.-P. A. Haeberly, M. V. Nayakkankuppam, and M. L. Overton; Nonsmooth Algorithms to Solve Semidefinite Programs, C. Lemaréchal and F. Oustry; sdpsol: A Parser/Solver for Semidefinite Programs with Matrix Structure, S.-P. Wu and S. Boyd; Part III: Analysis. Parametric Lyapunov Functions for Uncertain Systems: The Multiplier Approach, M. Fu and S. Dasgupta; Optimization of Integral Quadratic Constraints, U. Jönsson and A. Rantzer; Linear Matrix Inequality Methods for Robust H2 Analysis: A Survey with Comparisons, F. Paganini and E. Feron; Part IV: Synthesis. Robust H2 Control, K. Y. Yang, S. R. Hall, and E. Feron; Linear Matrix Inequality Approach to the Design of Robust H2 Filters, C. E. de Souza and A. Trofino; Robust Mixed Control and Linear Parameter-Varying Control with Full Block Scalings, C. W. Scherer; Advanced Gain-Scheduling Techniques for Uncertain Systems, P. Apkarian and R. J. Adams; Control Synthesis for Well-Posedness of Feedback Systems, T. Iwasaki; Part V: Nonconvex Problems. Alternating Projection Algorithms for Linear Matrix Inequalities Problems with Rank Constraints, K. M. Grigoriadis and E. B. Beran; Bilinearity and Complementarity in Robust Control, M. Mesbahi, M. G. Safonov, and G. P. Papavassilopoulos; Part VI: Applications. Linear Controller Design for the NEC Laser Bonder via Linear Matrix Inequality Optimization, J. Oishi and V. Balakrishnan; Multiobjective Robust Control Toolbox for LMI-Based Control, S. Dussy; Multiobjective Control for Robot Telemanipulators, J. P. Folcher and C. Andriot; Bibliography; Index.

2000 / xxviii + 372 pages / Softcover / ISBN-13: 978-0-898714-38-8 / ISBN-10: 0-89871-438-9 /
List Price $116.00 / SIAM Member Price $81.20 / Order Code DC02
Quantity desired

Search our catalog for:

Shopping cart provided by:
Select quantity and list or member price and then click the "Click to Order" button to add books to your shopping cart.
Banner art adapted from a figure by Hinke M. Osinga and Bernd Krauskopf (University of Auckland, NZ.)