Roger Temam
CBMSNSF Regional Conference Series in Applied Mathematics 66
This second edition, like the first, attempts to arrive as simply as possible at some central problems in the NavierStokes equations in the following areas: existence, uniqueness, and regularity of solutions in space dimensions two and three; large time behavior of solutions and attractors; and numerical analysis of the NavierStokes equations. Since publication of the first edition of these lectures in 1983, there has been extensive research in the area of inertial manifolds for NavierStokes equations. These developments are addressed in a new section devoted entirely to inertial manifolds.
Inertial manifolds were first introduced under this name in 1985 and, since then, have been systematically studied for partial differential equations of the NavierStokes type. Inertial manifolds are a global version of central manifolds. When they exist they encompass the complete dynamics of a system, reducing the dynamics of an infinite system to that of a smooth, finitedimensional one called the inertial system. Although the theory of inertial manifolds for NavierStokes equations is not complete at this time, there is already a very interesting and significant set of results which deserves to be known, in the hope that it will stimulate further research in this area. These results are reported in this edition.
Part I presents the NavierStokes equations of viscous incompressible fluids and the main boundaryvalue problems usually associated with these equations. The case of the flow in a bounded domain with periodic or zero boundary conditions is studied and the functional setting of the equation as well as various results on existence, uniqueness, and regularity of timedependent solutions are given. Part II studies the behavior of solutions of the NavierStokes equation when t approaches infinity and attempts to explain turbulence. Part III treats questions related to numerical approximation. In the Appendix, which is new to the second edition, concepts of inertial manifolds are described, definitions and some typical results are recalled, and the existence of inertial systems for twodimensional NavierStokes equations is shown.
Audience
This book will appeal to professionals working in fluid dynamics, aerodynamics, porous media flow, hydrodynamics, ocean and environmental sciences, and weather modeling.
Contents
Preface to the Second Edition; Introduction; Part I: Questions Related to the Existence, Uniqueness and Regularity of Solutions; Chapter 1: Representation of a Flow. The NavierStokes Equations; Chapter 2: Functional Setting of the Equations; Chapter 3: Existence and Uniqueness Theorems (Mostly Classical Results); Chapter 4: New a priori Estimates and Applications; Chapter 5: Regularity and Fractional Dimension; Chapter 6: Successive Regularity and Compatibility Conditions at t=0 (Bounded Case); Chapter 7: Analyticity in Time; Chapter 8: Lagrangian Representation of the Flow; Part II: Questions Related to Stationary Solutions and Functional Invariant Sets (Attractors); Chapter 9: The CouetteTaylor Experiment; Chapter 10: Stationary Solutions of the NavierStokes Equations; Chapter 11: The Squeezing Property; Chapter 12: Hausdorff Dimension of an Attractor; Part III: Questions Related to the Numerical Approximation; Chapter 13: Finite Time Approximation; Chapter 14: Long Time Approximation of the NavierStokes Equations; Appendix: Inertial Manifolds and NavierStokes Equations; Comments and Bibliography; Comments and Bibliography: Update for the Second Edition; References.
1995 / xiv + 141 pages / Softcover / ISBN13: 9780898713404 / ISBN10: 0898713404 / List Price $52.00 / SIAM/CBMS Member Price $36.40 / Order Code CB66
